Text Mining Group

(a)

Department of Computer Science and Engineering Faculty of Applied Sciences University of West Bohemia

Update Summarization Based on Novel Topic Distribution

Sutler @ Text Analysis Conference 2008

Josef Steinberger & Karel Ježek (jstein@kiv.zcu.cz & jezek_ka@kiv.zcu.cz)

November 2008

Outline

- Our previous summarization research
- Summarization approach overview
- The classical latent semantic analysis model and iterative residual rescaling
- Update summarizer
- TAC results
- Conclusion

Our previous summarization research

- Since 2004 we work on a (sentence-extractive)
 summarization method based on latent semantic analysis
 - Starting point paper written by Gong and Liu in 2002
 - We improved the method by changing the selection criterion
 - 2006 method extended to process a cluster of documents
 - 2008 update summarizer, changes in the core of the summarizer
- Using anaphoric information
 - Since 2005 with Massimo Poesio and M.A. Kabadjov
 - Tasks: Improving sentence extraction, correcting anaphoric links in the summary, sentence ordering
- Sentence compression
 - Removing unimportant clauses
 - A set of knowledge-poor features
 - A classifier decides if the crucial information was not removed

TAC Update Task

- Update task
- 48 topics, each topic has two sets of 10 documents
- The task is firstly to summarize the set of older documents (multi-document summaries) and then to summarize the set of new documents under the assumption that the reader has already read the set of older documents (update summaries)
- Each participant could submit up to 3 runs, the first two priority runs were annotated
- Main evaluation metric Pyramids

Summarization approach overview

- 1. Obtain "older topics" reader's prior knowledge in the set of older documents
- 2. Obtain "new topics" concepts in the set of new documents
- 3. Specify redundancy of the new topics = how much their information is covered by older topics
- 4. Specify the significance of the new topics = how important they are in the set of new documents
- 5. Specify novelty of the new topics = how significant and new they are
- 6. Create a summary of the sentences that best cover the novel topics

Latent semantic analysis (LSA)

- Technique for extracting hidden dimensions of the semantic representation of terms, sentences, or documents, on the basis of their contextual use (Landauer, 1997)
- Can cluster terms and sentences into topics
- Topics ordered according to their significance
- Dimensionality reduction insignificant dimensions are removed
- Used in various NLP applications
 - Information retrieval Berry et al., 1995
 - Text segmentation Choi et al., 2001
- Gong and Liu (2002) the first LSA-based summarization approach

The classical LSA model

- Creation of terms by sentences matrix A
 - Term weighting:
 - Local x Global weight best results with the Boolean local weight and the entropy-based global weight
- Apply SVD (Singular Value Decomposition) on matrix A
 - Result matrix A is decomposed into three matrices where information about the most important topics (linear combinations of original terms) can be found

Singular value decomposition

IRR – generalization of SVD

- Iterative Residual Rescaling
- Ando & Lee (2001)
- When the topic-sentence distribution is non-uniform in the analyzed text, the dominant topics take more than one dimension in the latent space, although the dimensions are orthogonal
- Minor topics are ignored and topic distribution is negatively biased by residual vectors from the dominant topic
- Iterative residual rescaling fights against this problem

Update summarization based on LSA (1)

- Reader's prior knowledge is assumed (represented by a set of older documents)
- Set of new documents is intended for own summarization
- We create a set of "old" topics and a set of "new" topics = separate LSA of both sets
- In matrices $U(U_{old}$ and U_{new}) we can see term/topic distributions
- For each new topic t we measure its redundancy (red_t) = cosine similarity with the most similar old topic

$$red_{t} = \max_{i=1}^{k_{1}} \frac{\sum_{j=1}^{m} U_{new}[j,t] \cdot U_{old}[j,i]}{\sqrt{\sum_{j=1}^{m} U_{new}[j,t]^{2}} \cdot \sqrt{\sum_{j=1}^{m} U_{old}[j,i]^{2}}}$$

Update summarization based on LSA (2)

- Significance of the topic is determined by its singular value (sing)
- Topic novelty (*nov*) is done by:

$$nov = (1 - red) * sing$$

- Topics with a high novelty value are considered interesting and thus get greater weights
- From topic novelties we create diagonal matrix NOV
- Final matrix F can be then computed as $NOV^*V_{new}^T$
- In F both topic novelty and importance are taken into account

Update summarization based on LSA (3)

- Sentence selection starts with the sentence that has the longest vector in $F(f_{best})$
- The information contained in the sentence is then subtracted from *F*:

$$F = F - (f_{best} \cdot f_{best} / |f_{best}|^2) * F$$

- The values that correspond to similar sentences are decreased, thus preventing inner summary redundancy
- After the subtraction the process of selecting the sentence that has the longest vector in matrix *F* and subtracting its information from *F* is iteratively repeated until the required summary length is reached.

TAC results

Overall TAC results of our summarizer.

Evaluation metric	Rank of run 25 (Total No. of runs)	Rank of run 51 (Total No. of runs)
Average modified (pyramid) score	10 (58)	16 (58)
Average num. of SCUs	12 (58)	17 (58)
Average num. of repetitions	55 (58)	22 (58)
Macroavg. modified score with 3 models	10 (58)	16 (58)
Average linguistic quality	10 (58)	8 (58)
Average overall responsiveness	9 (58)	14 (58)
ROUGE-2	17 (71)	22 (71)
ROUGE-SU4	17 (71)	18 (71)
BE	13 (71)	15 (71)

TAC results – update summaries

Separate TAC results of our update summaries

Evaluation metric	Rank of run 25 (Total No. of runs)	Rank of run 51 (Total No. of runs)
Average modified (pyramid) score	7 (58)	12 (58)
Average num. of SCUs	9 (58)	12 (58)
Average linguistic quality	5 (58)	12 (58)
Average overall responsiveness	15 (58)	16 (58)
ROUGE-2	18 (71)	25 (71)
ROUGE-SU4	17 (71)	21 (71)
BE	13 (71)	25 (71)

Conclusion

- We created an update summarization method which is independent on the language of the source.
- Next directions:
 - Use anaphora resolution >> co-reference resolution in the case of multi-documents
 - Improving sentence selection
 - Reference correction
 - Sentence ordering
 - Working on sentence compression
- Poster miniboaster
 - Guided example how our summarization approach works
 - You can see some numbers how topics look like in our sense